
Exploring Compiler Optimization Techniques

A. D. Blom

Abstract

In this era of global digitalization, the need for performant soft-
ware is larger than ever. For the production of fast software not only
fast hardware and solidly written code are needed, but also a well-
optimizing compiler. This paper explores some common optimization
techniques based on an SSA intermediate language.

1 Introduction
When a compiler translates code from a programming language to assembly
languages, it may apply a number of transformations to the source code, most
often to make programs faster (but also to enhance debugging capabilities
for example). Doing so is called code optimization.

Code optimization is most often done by first translating the source code
(as read by a lexer and interpreted by a parser) into an intermediate form,
which is subsequently converted into assembly.[1, chapter 2] Such an inter-
mediate form must be designed in such a way that it can be analyzed and
optimized easily. Such a intermediate form commonly consists of a list of in-
structions (using so-called three-way address code) grouped into basic blocks.
Each basic block has one starting point and one end-point. The endpoint is
always a terminal instruction which causes control flow to leave the block
(jmp, split, ret and leave in the intermediate form used here).

The following C source code:

i n t sub (i n t a , i n t b)
{

re turn a − b ;
}

May be converted (by the front-end) into the following intermediate form
(this intermediate form is described in section 2):

1

g l oba l i n t (int , i n t)∗ @sub(i n t p0 , i n t p1) {
L0 : i n t ∗ t1 = a l l o c a (i n t) ;

i n t ∗ t2 = a l l o c a (i n t) ;
s t o r e (t1 , p0) ;
s t o r e (t2 , p1) ;
i n t t3 = load (t1) ;
i n t t4 = load (t2) ;
i n t t5 = sub (t3 , t4) ;
r e t (t5) ;

L1 : l e ave () ;
}

Which is subsequently optimized (by the middle-end):

g l oba l i n t (int , i n t)∗ @sub(i n t p0 , i n t p1) {
L0 : i n t t1 = sub (p0 , p1) ;

r e t (t1) ;
}

And converted into assembly (by the back-end):

. g l o b l sub
sub :

movl %edi , %eax
sub l %es i , %eax
r e t

It is then that the job of the compiler is done, and the assembler takes
over, and converts the assembly into numerical codes ("ones and zeroes"):

89 66 66 f8 f 0 29 00 c3

One may ask oneself how the intermediate code is optimized from the
first into the significantly faster second format, and how this is implemented
concretlely in software. The acc project was written to find out, and this
article describes some of the optimization techniques used by acc (and a few
more).

2 Intermediate representation used
The intermediate representation (IR) used here is based on the static single
assignment (SSA) principle: every temporary variable may be assigned to
only once. It is partially based on the LLVM IR as described by LLVM [2].
There are a few differences: the IR used here uses a typesystem analogous
to C’s, and uses a C-like syntax for textual representation as well.

2

The custom IR used also lacks implicit blocks, so blocks are declared
explicitly using labels, and follow temporary value numbering.

Concretlely, the following LLVM snippet:

%1 = add i32 1 , i 32 2
%2 = icmp eq i32 %1, i 32 3
br i 1 %2, l a b e l %3, l a b e l %0
r e t i 32 0

Is equivalent to the following custom-IR:

L0 : i n t t1 = add ((i n t)1 , (i n t) 2) ;
_Bool t2 = cmp eq (t1 , (i n t) 3) ;
s p l i t (t2 , L3 , L0) ;

L3 : r e t ((i n t) 0) ;

Both languages feature an undef constant, with the ability to take on
any value. The custom IR lacks a null constant, it uses 0 instead.

A working C front-end is expected to be present, and snippets here will
be either in custom IR or C.

2.1 Common instructions

A lot of the instructions are taken from LLVM. The non self-explanatory
ones behave as described below.

2.1.1 alloca

Allocates memory of the specified type, and returns a pointer to that memory.
The memory is deallocated when the function returns.

2.1.2 split

A conditional jump, split(a, b, c); jumps to b if a, and c if not.

2.1.3 leave

In a function returning T, leave(); is equivalent to ret((T)undef);. It
returns from a function but returns no useful value.

3

3 SSA conversion optimization

3.1 Problem

Imperative languages usually allow variables and memory to be rewritten.
SSA inherently, does not allow temporary variables to change their value
over time. SSA supports several ways to support this model. One is using
the alloca instruction to allocate memory and use the load/store system,
another, is cleverly using SSA and its φ nodes. The first translation uses
rewritable memory and is therefore not a strict SSA representation of control
flow.1

Consider the following imperative code:

i n t i ;
i f (c ond i t i on)

i = 0 ;
e l s e

i = 1 ;
re turn i ;

A naive translation would be:

L0 : i n t ∗ t1 = a l l o c a (i n t) ;
s p l i t (cond , L2 , L3) ;

L2 : s t o r e (t1 , (i n t) 0) ;
jmp(L4) ;

L3 : s t o r e (t1 , (i n t) 1) ;
jmp(L4) ;

L4 : i n t t5 = load (t1) ;
r e t (t5) ;

It involves two memory accesses and a memory allocation. Pointers are
involved so it’s hard to optimize any further.

It also complicates register allocation a great deal. The allocator now not
only needs to keep track of where its temporaries are, but also the registers
used by the alloca instructions. Furthermore it’s complicated by requiring
a new lifetime analysis method, instead of the one already provided for tem-
poraries, since most alloca memory needn’t be alive for the entirety of the
surrounding function.

1The intermediate form used is still SSA compliant, however, even though it allows
rewriting of memory. The temporary values (t1 etc.) are still single-assignment. Allowing
rewritable memory is a necessary evil for imperative languages.

4

For further optimization it’s far more convenient to turn such a complex
system with alloca, load and store into an pure system where each variable
is truly written to once.

SSA features a mechanism that allows selecting a value based on the
previously run block. This system is a φ node system, where a φ node is an
instruction taking a map of blocks and expressions, selecting the appropriate
expression based on the predecessing block.

L0 : s p l i t (cond , L1 , L2) ;
L1 : jmp(L3) ;
L2 : jmp(L3) ;
L3 : i n t t4 = phi (L1 , (i n t)0 ,

L2 , (i n t)1) ;
r e t (t4) ;

Sometimes for imperative languages it is impossible to use the second
system, for example in the case where actual memory is required:

i n t i = 0 ;
foo (& i) ;
r e turn i ;

Can’t use a φ node system, since it needs i to actually exist in memory.
It is therefore hard for a front-end to decide which system to use, and many2

default to using the first system all of the time, relying on the middle-end
to optimize it into an SSA system. If an alloca variable can convert its
load/store system it shall be considered SSA-capable.

3.2 Implementation3

Given a simple, one-block SSA graph:

L0 : i n t ∗ t1 = a l l o c a (i n t) ;
s t o r e (t1 , (i n t) 0) ;
i n t t2 = load (t1) ;
i n t t3 = add (t1 , (i n t) 1 0) ;
s t o r e (t1 , t3) ;
i n t t4 = load (t1) ;
r e t (t4) ;

Can t1 be considered SSA-capable? It’s been established that an alloca
system is not SSA-capable if the memory is actually required to exist. This

2At least clang does so: echo "void foo() { int a; }" | clang -x c - -S -emit-llvm -o
/dev/stdout

3This is the o_phiable() optimization pass in opt.c in acc

5

means (naively) that a system is not SSA-capable if the alloca instruction
is used outside its own load/store instructions: that is if it is ever used in
an instruction, except as the first operand of a store or load.

t1 meets the phiability requirements. load instructions need to be re-
placed by its last store. This means that the load in line 3 (t2) needs to be
replaced by its last stored value (line 2). t4 similarly needs to be replaced
by t3:

L0 : i n t t1 = add ((i n t)0 , (i n t) 1 0) ;
r e t (t1) ;

This constitutes an enormous code shrinkage, and will speed up the code
immensely.

Finding the last store is trivial for these one-block examples, it is more
involved when considering a piece of code where the last store is in one of a
load’s block predecessors. Consider this:

L0 : i n t ∗ t1 = a l l o c a (i n t) ;
s p l i t (cond , L2 , L3) ;

L2 : s t o r e (t1 , (i n t) 0) ;
jmp(L4) ;

L3 : s t o r e (t1 , (i n t) 1) ;
jmp(L4) ;

L4 : i n t t5 = load (t1) ;
r e t (t5) ;

For the load in line 7 for example, finding the last store is non-trivial, it
has in fact got multiple last store instructions, one in L2 and one in L3. It
is now actually required to implement a φ node. It selects the value from L2
if that was its predecessor, and the store from L3 if that was its predecessor
using a φ node:

L0 : s p l i t (cond , L1 , L2) ;
L1 : jmp(L3) ;
L2 : jmp(L3) ;
L3 : i n t t4 = phi (L1 , (i n t)0 , L2 , (i n t) 1) ;

r e t (t4) ;

It is also possible for an alloca to be loaded without any previous store.
In that case, the value of the load is undefined, and it is tempting to use
the undef constant. It is important, however, that the result of the load
is guaranteed to remain constant. That isn’t the case if all instances are
replaced by individual undef constants. Consider, for instance, the following
example:

6

L0 : i n t ∗ t1 = a l l o c a (i n t) ;
i n t t2 = load (t1) ;
i n t t3 = load (t1) ;
_Bool t4 = cmp eq (t2 , t3) ;
. . .

The value of t4 is well-defined, because the value of t1 is guaranteed not
to alter spontaneously. If the following translation would be used:

L0 : _Bool t1 = cmp eq ((i n t) undef , (i n t) undef) ;
. . .

The result of the comparison is undefined as well.
It is therefore required to introduce a undef instruction. The code would

therefore be optimized into:

L0 : i n t t1 = undef (i n t) ;
_Bool t4 = cmp eq (t1 , t1) ;
. . .

4 Constant folding

4.1 Problem

When a programmer writes something along these lines:

i n t i = 10 − 3 ∗ 2 ;

The compiler can be expected to see that i should be initialised to four,
rather than having it emit instructions for each mathematical operation.
Moreover, if a programmer types:

i n t a = 10 ;
i n t b = a ∗ 2 ;

The compiler can also be expected to simplify the initialisation of b into
an initialisation to twenty. Although perhaps trivially optimised manually,
these types of trivial constant expressions occur not so much in manually
written code, but quite often in macro expansions.

Therefore the compiler may not expect all constants to be simplified as
much as possible. Instead, the compiler evaluates these constants in a pro-
cess known as constant folding, and subsequently propegates these constants
further, filling them in for SSA variables along the way in a process known
as constant propagation.

7

4.2 Implementation4

In order to perform any useful consant folding, the compiler needs to fill in
constants for variables where possible, so code of the form:

i n t a = 10 ;
i n t b = a ∗ a ;
r e turn b − a ;

Becomes:

i n t b = 10 ∗ 10 ;
r e turn b − 10 ;

Once the value of b is determined, it should then also be filled in, to
fold further. Since the value of b is 100, it can be used to fill in the return
expression:

r e turn 100 − 10 ;

This value can then be folded once more to yield the value 90:

r e turn 90 ;

This algorithm might look quite involved, but its simplicity is actually
staggering. It simply depends on SSA conversion optimization (as described
in section 3). SSA conversion optimization fills in constants for variables
automatically. Consider the first fragment’s IR before SSA conversion opti-
mization:

L0 : i n t ∗ t1 = a l l o c a (i n t) ;
i n t ∗ t2 = a l l o c a (i n t) ;
s t o r e ((i n t)10 , t1) ;
i n t t3 = load (t1) ;
i n t t4 = load (t1) ;
i n t t5 = mul (t3 , t4) ;
s t o r e (t5 , t2) ;
i n t t6 = load (t2) ;
i n t t7 = load (t1) ;
i n t t8 = sub (t6 , t7) ;
r e t (t8) ;

The variables still exist in their crude memory form. However, their values
are propagated automatically once SSA conversion optimization occurs:

L0 : i n t t1 = mul ((i n t)10 , (i n t) 1 0) ;

4This is the o_cfld() optimization pass in opt.c in acc

8

i n t t2 = sub (t1 , (i n t) 1 0) ;
r e t (t2) ;

The constants can now be propagated with a pass that scans for com-
putable instructions (arithmetic instructions of which both operands are con-
stants) and computes their values, filling them in for all future occurrences:

L0 : r e t ((i n t) 9 0) ;

4.3 Considerations

4.3.1 Platform incompatibilities

There is a way compiler-based constant folding might stand in the way of the
programmer. Mostly the compiler can do this when folding away instructions
operating on floating point operands, because different targets may compute
floating point operations differently. Therefore cross-compilation becomes
an issue; if a floating point instruction for target Y normally yielding Vy, it
yields Vx when folded away by target X, causing different semantics before
and after optimization.[3]

A solution to this problem is to implement a floating point virtual ma-
chine for several targets, that use non IEEE floating point. Targets using
IEEE floating point can use C99’s internal way of computing IEEE float-
ing point operations. Since implementing such a system is non-trivial, code
duplication needs to be avoided. If any other optimization would need to
be able to calculate an operation on two constants, it should run the same
code. Therefore, the actual folding computations are performed outside of
the optimiser, by a separate folding system.

5 Constant split removal

5.1 Problem

After constant folding, some split instructions may branch on a constant
condition:

La : . . .
s p l i t ((_Bool)1 , Lb , Lc) ;

Lb : r e t ((i n t) 0) ;
Lc : r e t ((i n t) 1) ;

Could be converted easily into:

9

La : . . .
jmp(Lb) ;

Lb : r e t ((i n t) 0) ;
Lc : r e t ((i n t) 1) ;

This has only minor implications for further flow, except that it removes
a predecessor from block Lc. The only way that that affects SSA validity is
that a block-expression pair may need to be removed from φ nodes in Lc.

Removing this predecessor may also have implications for further block
inlining; if a block has only one predecessor and the predecessor has only one
successor, the block could be merged with its predecessor.

5.2 Implementation5

The implementation of this optimization simply needs to check whether the
first parameter of a split instruction is constant, and convert it into a jmp
accordingly. It also needs to check for the presence of φ nodes in the block
not covered by the jmp instruction, and remove them accordingly:

La : . . .
s p l i t ((_Bool)1 , Lb , Lc) ;

Lb : . . .
Lc : i n t tA = phi (La , (i n t)10 , . . .) ;

. . .

Needs to get rid of the La items from the tA φ node too:

La : . . .
jmp(Lb) ;

Lb : . . .
Lc : i n t tA = phi (. . .) ;

. . .

6 Block inlining

6.1 Problem and implementation

When a block has only one predecessor and its single predecessor also has
one successor, its instructions can be inlined into the block it succeeds:

L0 : . . .

5This is the o_uncsplit() pass in opt.c acc

10

jmp(L1) ;
L1 : i n t t2 = add ((i n t)0 , (i n t) 1) ;

jmp(L3) ;
L3 : . . .

Becomes (assuming L1 has no other predecessors):

L0 : . . .
i n t t1 = add ((i n t)0 , (i n t) 1) ;
jmp(L2) ;

L2 : . . .

That way the amount of jumps and blocks is reduced without duplicating
instructions.

It’s a very trivial optimization but occurs quite a lot, especially consider-
ing the front-end may generate redundant blocks all the time. Consider an
infinite for loop:

f o r (; cond ;)
;

The front-end puts the initialization clause in the block it’s currently writ-
ing to, but generates a new block for the condition, then generates (without
knowledge of the loop body) a block for the final loop clause (this block is
needed to jump to when compiling a continue statement). It inserts this
block after it has generated the body block.

This would therefore be a possible translation:

/∗ ente r the loop ∗/
L0 : jmp(L1) ;

/∗ cont inue or break from the loop ∗/
L1 : s p l i t (cond , L2 , L4) ;

/∗ go to the f i n a l c l au s e ∗/
L2 : jmp(L3) ;

/∗ no f i n a l c lause , jump to loop s t a r t ∗/
L3 : jmp(L1) ;
L4 : . . .

It can be noticed quite easily that L3 only has one predecessor (L2), and
its predecessor only one successor. It can therefore be merged with L2:

/∗ ente r the loop ∗/
L0 : jmp(L1) ;

/∗ cont inue or break from the loop ∗/
L1 : s p l i t (cond , L2 , L3) ;

/∗ go to the f i n a l c l au s e ∗/

11

/∗ no f i n a l c lause , jump to loop s t a r t ∗/
L2 : jmp(L1) ;
L3 : . . .

This turns out to be quite an interesting case, however; it can also be
noticed that this example might be optimized further, so the split in L1
jumps to itself immediately. This is because L2 is empty besides the jmp
instruction: the condition for empty loops to be inlined is therefore more
relaxed.

In fact, all empty blocks (except L0 and empty blocks that are their own
predecessor) can be inlined:

L0 : jmp(L1) ;
L1 : s p l i t (cond , L1 , L2) ;
L2 : . . .

7 Block pruning

7.1 Problem

When the intermediate form is generated by the front-end, it may leave blocks
in the IR without any predecessors. This is often the result of a language
that allows the programmer to write unreachable code. I.e. the following C:

re turn 0 ;
r e turn 1 ;

There’s no was the second line could possibly be reached, and this is even
obvious in the intermediate form. This would be a possible naive translation:

L0 : r e t ((i n t) 0) ;
L1 : r e t ((i n t) 1) ;

The L1 block can be left out in its entirety, improving code size.

7.2 Implementation6

A block can be left out if it has no predecessors and isn’t L0. This is a fairly
trivial operation. The only consideration might be a φ node in one of the
block’s successors. If such a successor has a φ node with an item for the
block marked for removal, that item must be removed. That’s always the
case, however, when removing a block.

6A reference implementation can be found in acc as the o_prune() pass

12

8 Register allocation

8.1 As an optimization

It’s hard to categorize register allocation as either an optimization or a gen-
eral method used in assembly generation. For the purposes of this article
it’ll be classified as the former, because it is a way to speed up generated
assembly.

8.2 Problem

CPUs have only a limited amount of registers. The original i386 processors
had only six general purpose registers for example (eax, ebx, ecx, edx, esi
and edi).[4, section 3.4.1] It is therefore required that these registers are used
cleverly to house variables7, so as little as possible performance is lost due to
the inherent slowness of stack memory.

8.3 Implementation

8.3.1 Restricter

First the IR is handed over to a target-specific restricter. This restricter
makes sure the IR meets certain platform requirements (i.e. putting an in-
tegral/pointer return value in eax on x86 systems). Making sure register
requirements are met are done with the mov instruction. The mov instruction
copies another instruction result, but has a separate life, and therefore life-
time. The mov result is tagged (annotated in the IR) with a location (loc)
tag, specifying the register.

8.3.2 Register allocator

To make a selection of variables to which registers can be assigned, variable
usage frequency is the most important factor. It is therefore important to
have an analysis pass analyzing variable usage frequency. A simple technique
is to simply count the amount of instructions in which the variable is used.
This disregards any control flow (and therefore block execution repetition).
Such an analysis is trivial.8

A variable’s lifetime needs to be considered as well. After all, no two
variables that are alive simultaneously may be assigned the same register.

7The results of SSA instructions aren’t variables strictly speaking, but for the sake of
this section they will be regarded as variables.

8This is the a_used() analysis in analyze.c.

13

The lifetime analysis step is a bit more involved, but relies on the basic
principle that a variable’s lifetime starts at definition, and ends at its last
usage. Its last usage is the usage after which control can’t ever reach a usage
again.9

Consider variable lifetimes for this block:

L0 : i n t t1 = mul ((i n t)2 , (i n t) 3) ;
i n t t2 = add (t1 , (i n t) 1) ;
i n t t3 = div (t1 , t2) ;
i n t t4 = mul (t1 , t2) ;
i n t t5 = sub (t3 , t4) ;
r e t (t5) ;

By the target (x86) restricter, the following restrictions are made:

L0 : i n t t1 = mul ((i n t)2 , (i n t) 3) ;
i n t t2 = add (t1 , (i n t) 1) ;
i n t t3 = div (t1 , t2) ;
i n t t4 = mul (t1 , t2) ;
i n t t5 = sub (t3 , t4) ;
/∗ l o c (r0) ∗/
i n t t6 = mov(t5) ;
r e t (t6) ;

During lifetime analysis, the following observations are added:

L0 : i n t t1 = mul ((i n t)2 , (i n t) 3) ;
i n t t2 = add (t1 , (i n t) 1) ;
i n t t3 = div (t1 , t2) ;
/∗ e n d l i f e (t1 , t2) ∗/
i n t t4 = mul (t1 , t2) ;
/∗ e n d l i f e (t3 , t4) ∗/
i n t t5 = sub (t3 , t4) ;
/∗ l o c (r0) , e n d l i f e (t5) ∗/
i n t t6 = mov(t5) ;
/∗ e n d l i f e (t6) ∗/
r e t (t6) ;

Such lifetime observations may be graphed into the overlap graph as
shown in figure 1.

From this, certain registers can be induced further. There is no overlap
between t6 and the variable it movs (t5). Therefore t5 is also hinted to be
placed into r0.

9This is the a_lifetime() analysis in analyze.c.

14

Figure 1: Variable overlap graph. An arrow indicates a lifetime overlap.

All variables hinted towards being placed in a certain location are put
there when possible. Sometimes hints may overlap, in which case the most
frequently used is picked. The situation becomes as shown in figure 2.

Figure 2: Variable overlap graph after induction.

The remaining registers are allocated per variable in lexical order. If
there aren’t enough registers available, the least frequently used are stored
in memory. Here, t1 and t4 are put in r0, t2 is put in r3 and t3 is put in
r1. These registers are eax, edx and ebx respectively. r3 is chosen instead
of r1, because r1 is callee-save in the used calling convention (GNU i386).
Caller-saved registers are preferred over callee-saved registers because they
have less function prologue/epilogue overhead: they needn’t be stored when
entering the function and restored when leaving the function.

The following tags are the result of register allocation based on these
principles:

15

L0 : /∗ l o c (r0) ∗/
i n t t1 = mul ((i n t)2 , (i n t) 3) ;
/∗ l o c (r3) ∗/
i n t t2 = add (t1 , (i n t) 1) ;
/∗ l o c (r1) ∗/
i n t t3 = div (t1 , t2) ;
/∗ e n d l i f e (t1 , t2) , l o c (r0) ∗/
i n t t4 = mul (t1 , t2) ;
/∗ e n d l i f e (t3 , t4) , l o c (r0) ∗/
i n t t5 = sub (t3 , t4) ;
/∗ l o c (r0) , e n d l i f e (t5) ∗/
i n t t6 = mov(t5) ;
/∗ e n d l i f e (t6) ∗/
r e t (t6) ;

The step of generating assembly is now only trivial.

9 Conclusion
There are many ways IR can be optimized into a faster form. These have
been examples of ways to do so, there are, however, many more. Most of
these optimizations have seen a practical implementation in the included acc
software, for reference and practical examples. In appendix A parts of this
software are described in detail.

References
[1] Aho et al. Compilers: Principles, Techniques And Tools. (1988)

[2] LLVM Language Reference Manual. (2014) Consulted on 2014/11/11,
http://llvm.org/docs/LangRef.html

[3] Constant folding and cross compilation. (s.d.) Consulted on 2014/11/11,
http://en.wikipedia.org/wiki/Constant_folding#Constant_
folding_and_cross_compilation

[4] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Devel-
oper’s Manual Volume 1. (2014)

16

http://llvm.org/docs/LangRef.html
http://en.wikipedia.org/wiki/Constant_folding#Constant_folding_and_cross_compilation
http://en.wikipedia.org/wiki/Constant_folding#Constant_folding_and_cross_compilation

A Implementation Details for acc

A.1 Introduction

acc (the antonijn/Antonie C Compiler) is a software project with the intent
of one-day being self-hosting (able to compile itself). The only external
library it depends on is the C99 standard library, and it’s written in portable
standard C99.

acc implements many of the optimizations mentioned in the main paper,
and could serve as a reference implementation for them. It is however, much
more than that, of course, since it has to provide not only an optimizer,
but back-ends and a C front-end as well. Only the subsystems relevant
to compiler optimization are described here in detail. The most relevant
subsystem is the so-called intermediate subsystem (shortened to itm in code),
implementing functions and data structures for defining and manipulating an
intermediate form SSA tree. It also implements functions for writing such a
tree to a file in text form.

A.2 Object oriented programming

Although the C language doesn’t natively feature object oriented syntax, it
doesn’t exclude the possibility of writing clean object oriented code.

Figure 3: Class diagram example

The class diagram described in figure 3 could be implemented in C as
follows:

s t r u c t A {
/∗ po in t e r to a B or C ob j e c t ∗/
void ∗ extended ;

void (∗ f r e e) (s t r u c t A ∗ s e l f) ;
} ;

17

s t r u c t B {
s t r u c t A base ;

i n t f i e l d ;
} ;

s t r u c t C {
s t r u c t B base ;

f l o a t f i e l d ;
} ;

This style will be found a lot in the acc source code, although sometimes
missing the extended field in a base class (in which case the addresses of
both types are presumed compatible).

A.3 The AST and its elements

The itm abstract syntax tree (AST) is not very complex. It mostly uses
linked lists (the struct list *, for instance, is a linked list containing only
void * instances) for chaining instructions and blocks together.

A variety of structures is needed to store the following snippet internally:

g l oba l i n t (int , i n t)∗ @gcd(i n t p0 , i n t p1) {
L0 : jmp(L1) ;
L1 : i n t t2 = phi (L0 , p0 , L5 , t7) ;

i n t t3 = phi (L0 , p1 , L8 , t9) ;
_Bool t4 = cmp neq (t2 , t3) ;
s p l i t (t4 , L6 , L10) ;

L5 : _Bool t6 = cmp gt (t2 , t3) ;
i n t t7 = sub (t2 , t3) ;
s p l i t (t6 , L1 , L8) ;

L8 : i n t t9 = sub (t3 , t2) ;
jmp(L1) ;

L10 : r e t (t2) ;
}

And AST capable of storing such an IR, must be able to store func-
tions, global variables (unimplemented as of yet), basic blocks, instructions,
parameters (unimplemented as of yet), literals and undef constants. These
elements are implemented through a structure system as described in figure 4.

18

Figure 4: The AST class diagram

A common base type for most AST elements is struct itm_expr (the
expression base type). It contains a destructor, a (C) typename, and a list
of tags. Tags are used to store expression attributes ("tag"). Tags are used
in section 8 for example.

s t r u c t itm_expr {
/∗ der ived type i d e n t i f i e r
∗
∗ The enumeration conta in s f o r
∗ example :
∗ ITME_INSTRUCTION,
∗ ITME_LITERAL
∗ ITME_BLOCK
∗ . . .
∗/

enum itm_expr_type etype ;

/∗ expre s s i on ’ s C typename ∗/
s t r u c t ctype ∗ type ;
/∗ tag l i s t ∗/
s t r u c t l i s t ∗ tags ;

/∗ de s t ru c t o r

19

∗ (implemented by der ived c l a s s) ∗/
void (∗ f r e e) (s t r u c t itm_expr ∗e) ;
/∗ to_str ing f o r f i l e dumps
∗ (implemented by der ived c l a s s) ∗/

void (∗ to_str ing) (FILE ∗ f , s t r u c t itm_expr ∗e) ;
} ;

Global variables (as of yet unimplemented) and functions are represented
through container structures (struct itm_container *). They contain an
entry block, and are expressions themselves (as required to be called):

s t r u c t itm_container {
/∗ exp r e s s i on base ∗/
s t r u c t itm_expr base ;

/∗ conta ine r i d e n t i f i e r ∗/
char ∗ id ;
/∗ entry block ∗/
s t r u c t itm_block ∗block ;

} ;

Blocks are represented through struct itm_block * structures. They
are expressions (as required to be a parameter to jmp() or split()), contain
a pointer to the first instruction, the last instruction (terminal instruction),
a pointer to the block that’s lexically next (L1 for L0 in the first example), a
pointer to the block that’s lexically previous (L0 for L1 in the first example,
NULL for L0), and two lists of blocks that are sementically next and previous
(L1 is L10’s semantic predecessor, for example).

s t r u c t itm_block {
/∗ exp r e s s i on base ∗/
s t r u c t itm_expr base ;

/∗ the conta ine r the block ’ s conta ined by ∗/
s t r u c t itm_container ∗ conta ine r ;
/∗ f i r s t and l a s t i n s t r u c t i o n s ∗/
s t r u c t i tm_instr ∗ f i r s t , ∗ l a s t ;
/∗ b locks l e x i c a l l y next and prev ious ∗/
s t r u c t itm_block ∗ l exnext , ∗ l exprev ;
/∗ predec e s s o r and su c c e s s o r l i s t s ∗/
s t r u c t l i s t ∗next , ∗prev ;

} ;

Instructions are represented as struct itm_instr pointers. They are

20

themselves a linked list: they contains pointers to the previous and next
instructions. They also link to their parent block, and have a list of their
operands. They contains a field of a strange type (itm_instr_id_t) which
is an instruction identifier constant for each instruction type.

For instance, an instruction of the type add has a constructor called
itm_add(). Its identifier can be obtained passing that function to the
ITM_ID() macro: ITM_ID(itm_add).

The structure looks roughly like this:

s t r u c t i tm_instr {
/∗ exp r e s s i on base type ∗/
s t r u c t itm_expr base ;

/∗ i n s t r u c t i o n i d e n t i f i e r (add , sub ,
∗ l eave , e t c .) ∗/

itm_instr_id_t id ;
/∗ parent block ∗/
s t r u c t itm_block ∗block ;
/∗ i n s t r u c t i o n operand l i s t ∗/
s t r u c t l i s t ∗operands ;
/∗ prev ious and next i n s t r u c t i o n s ∗/
s t r u c t i tm_instr ∗prev , ∗next ;

} ;

Then there has to be a way to store literals (both floating point and
integral) and undef constants. These structures are trivial:

s t r u c t i tm_ l i t e r a l {
/∗ exp r e s s i on base ∗/
s t r u c t itm_expr base ;

/∗ value , shar ing memory ∗/
union {

long long i ;
double d ;
f l o a t f ;

} va lue ;
} ;

s t r u c t itm_undef {
/∗ exp r e s s i on base ∗/
s t r u c t itm_expr base ;

} ;

21

A.3.1 Type system

The type system used by the IR is the same as the type system used by C.
Few details are of importance, but it’s important that the primitive types
are represented by &cint, &cshort, &clong, &cchar, &cbool, &cfloat and
&cdouble. Type system types are of type struct ctype *.

A.4 Expression constructors

A.4.1 Instructions

Writing instructions to a basic block is done with an instruction constructor,
which creates an instruction and inserts it at the end of a basic block. The
instruction constructor prototype for add is as follows:

s t r u c t i tm_instr ∗ itm_add (
s t r u c t itm_block ∗parent ,
s t r u c t itm_expr ∗ l e f t ,
s t r u c t itm_expr ∗ r i g h t) ;

A.4.2 Literals

Creating a literal is done by invoking new_itm_literal():

s t r u c t i tm_ l i t e r a l ∗new_itm_literal (
s t r u c t itm_container ∗c ,
s t r u c t ctype ∗ type) ;

After creating a new literal, its value is manipulated by setting the value
field. The c parameter is needed to register the literal with a container, to
automatically dispose of the literal when the container is disposed of.

A.4.3 Example

To add an addition of literals 1 and 2 (ints) to block b, one’d write:

s t r u c t i tm_ l i t e r a l ∗ l , ∗ r ;
l = new_itm_literal (b−>conta iner , &c i n t) ;
r = new_itm_literal (b−>conta iner , &c i n t) ;
l−>value . i = 1 ;
r−>value . i = 2 ;

/∗
∗ &l−>base i s used in s t ead o f j u s t l

22

∗ because the con s t ruc to r takes an
∗ itm_expr ∗ , not an i tm_ l i t e r a l ∗ .
∗/

itm_add (b , &l−>base , &r−>base) ;

A.5 Optimizations and analyzations

Optimizations as described in sections 3, 4, 5 and 7. Are implemented
in itm/opt.c. They are the o_phiable(), o_cfld(), o_uncsplit() and
o_prune() functions respectively. SSA-capability, lifetime and usage anal-
yses are implemented in itm/analyze.c as a_phiable(), a_lifetime() and
a_used() respectively.

A.6 Command line options

Invoke acc --help to obtain information about command line options. Most
importantly, to dump the IR of the C file test.c into test.c.ir, run:

$. / acc t e s t . c −S i r

Add -O2 to optimize.
Using -S is very unstable as of the pws-bo2 version.

A.7 Conclusion

This has been an insight into the inner workings of acc. The optimizations
and analyzations have been left undescribed, but have been (hopefully) writ-
ten in such a way that they can be understood easily given the information
provided before.

23

	Introduction
	Intermediate representation used
	Common instructions
	alloca
	split
	leave

	SSA conversion optimization
	Problem
	Implementation

	Constant folding
	Problem
	Implementation
	Considerations
	Platform incompatibilities

	Constant split removal
	Problem
	Implementation

	Block inlining
	Problem and implementation

	Block pruning
	Problem
	Implementation

	Register allocation
	As an optimization
	Problem
	Implementation
	Restricter
	Register allocator

	Conclusion
	Implementation Details for acc
	Introduction
	Object oriented programming
	The AST and its elements
	Type system

	Expression constructors
	Instructions
	Literals
	Example

	Optimizations and analyzations
	Command line options
	Conclusion

